# Create, Interpret, and Use a Linear Regression Model in R

In my last post, we looked at how to create a correlation matrix in R. Specifically, we used data pulled from the web to see which variables were most highly correlated with an automobile’s fuel economy. Suppose, however, that we are trying to guess the fuel economy of a new car without actually having driven it. Is there a way for us to use the things we do know about the car to predict how many miles per gallon it will get?

When you’re trying to figure out how multiple variables interact to produce an effect in another variable, you’ll want to perform a regression analysis. There are many programs in which you can do this–SAS, SPSS, Stata, and even to a limited extent in Microsoft Excel. Heck, if you’ve got enough time to kill and brain power to exhaust, you can even do it with a pencil and paper.

Of course, given the nature of this blog, we’re going to perform a simple regression analysis using R. And it’s surprisingly fairly simple to generate the output. Let’s have a look at some code…

```motorcars <- read.csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv", stringsAsFactors = FALSE)

head(motorcars)
```

The first thing we’ll do, as in many other situations, is read in some data and take a look at it. When we import the “motorcars” dataset and call the head() function on it, here’s what we get… Now is the part where we use our subject matter expertise and basic human experience to evaluate which variables we think may influence the mpg of a particular vehicle. (Here’s the document explaining what the variable names mean). For argument’s sake, let’s say we determine the displacement (disp), the weight (wt), and the horsepower (hp) to be the only variables we think could really have an effect on the fuel economy of the car. So, those are the ones we decide to put into our model. Let’s look at the code on how to build the model…

```mc_model <- lm(motorcars\$mpg ~ motorcars\$disp + motorcars\$wt + motorcars\$hp)

summary(mc_model)
```

So, we actually create the model with the lm() function. Inside the function, we use the basic framework of “the independent variable (the one we’re trying to predict) is equal to variable1 + variable2 + variable3, and so on…” However, instead of the “=” sign, we use the “~” sign. Then, we assign the model to a named object–in this case “mc_model.”

Once, we’ve created the model and assigned a name to it, we can call the summary() function on it to get an overview of the results. Here’s what the output looks like for the model we’ve created… Now, for simplicity’s sake, I’m just going to interpret a few components of the model. The first thing you’ll want to look at is the “p-value” in the bottom right corner of this summary. This number tells you whether or not the model is “statistically significant,” given your criteria. Essentially, it’s the probability that the outcome of the model is due to random chance. Generally, practitioners use 0.05 as a threshold–such that anything less than that is deemed acceptable. So, we can see that our model as a whole is statistically significant–or usable for making predictions.

Next, let’s look at the far right column of the table labeled “Coefficients,” with the header “Pr(>|t|).” This column contains the “p values” of each individual variable we are considering. Even if the model as a whole is statistically significant, there still may be some variables within it that are not. In this case, we can see that the “displacement” variable is not statistically significant by virtually any measure. So, we can decide to throw that out of our model. So, going forward, let’s look only at the other two variables: “weight” (wt) and “horsepower” (hp).

The last thing we’ll need to look at for our purposes is the “Estimate” column of the “Coefficients” table. Ignoring the “motorcars\$disp” variable, we’ll look at the other three. The “Intercept” is what the model begins with before weight and horsepower are taken into consideration. Or, given the information in the model, it’s the miles per gallon the car will get if it has no weight and no horsepower.

For the “motorcars\$wt” and “motorcars\$hp” variables, you’ll multiply the estimate by each unit of weight and horsepower, respectively. Then, you’ll add the results together with the “Intercept” to conclude how many miles per gallon your car will get. Here’s the formula for our model:

miles per gallon = 37.105505 + (weight[in 1000s] * -3.800891) + (horsepower * -0.031157)

So, let’s say we have a car that weights 2000 pounds and has 100 horsepower. How many miles per gallon can we expect it to get? If we compute this in R, here’s what it will look like… So, given our model, we can expect a car that weights 2000 pounds and has 100 horsepower to get about 26.4 miles per gallon.

Now, let’s suppose we have a huge list of cars on which we want to run this model. It would be tedious to have to type in those numbers over and over again. Is there anything we can do about it?

Of course, there is. We can create a function that has our dependent variables (weight and horsepower) as inputs. Then, all we have to do is put in the weight and horsepower of each car and the miles per gallon will return as a result. Here’s what the code for that looks like:

```mc_fun <- function(weight,horsepower) {
37.105505 + (weight * -3.800891) + (horsepower * -0.031157)
}

args(mc_fun)

mc_fun(2,100)
mc_fun(2.5,150)
mc_fun(3,200)
mc_fun(5,350)
```

Now, whatever combination of weight and horsepower we input into the mc_fun function, we’ll get an output of miles per gallon. To check the order in which you’ll input the variables, use the args() function.

In the code above, I’ve included four examples–increasing in weight and horsepower. I start with our original example of a 2000 pound car with 100 horsepower and go all the way up to a 5000 pound car with 350 horsepower. Based on our model, we can expect the fuel economy to decrease as the weight and horsepower increases. Does this actually happen? Let’s look at the output to find out… Consistent with our original formula example, a car with a weight of 2000 pounds and 100 horsepower gets 26.4 miles per gallon. If, however, we’ve got our hearts set on buying that massive yet agile tank of an automobile weighing 5000 pounds and getting 350 horsepower, we’ll have to settle for a measly 7.2 miles per gallon.

If we’re set on buying the boat, we might want to live very close to a gas station…

Advertisements

# Examine a Data Frame in R with 7 Basic Functions

When I first started learning R, it seemed way more complicated than what I was used to with looking at spreadsheets in Microsoft Excel. When I started working with data frames in R, it didn’t seem quite as easy to know what I was looking at.

I’ve since come to see the light. While there is a bit of a learning curve to get a handle on it, viewing data in R is infinitely more flexible than doing so in Excel. In this post, I’ll cover the most basic R functions for examining a data set and explain why they’re important.

Understanding how to get a simple overview of the data set has become a huge time saver for me. If you aren’t familiar with these functions, you need to be. If you’re anything like me, you’ll use them first for every single data set you consider.

All of the functions I’m discussing here come in the base R Utils package, so there’s no need to install any additional packages. Here are the functions, with links to their documentation:

1. dim(): shows the dimensions of the data frame by row and column
2. str(): shows the structure of the data frame
3. summary(): provides summary statistics on the columns of the data frame
4. colnames(): shows the name of each column in the data frame
5. head(): shows the first 6 rows of the data frame
6. tail(): shows the last 6 rows of the data frame
7. View(): shows a spreadsheet-like display of the entire data frame

Now, let’s import a data set see how each of these functions works. First, here’s the code:

```### Import a data set on violent crime by state and assign it to the data frame "crime"
crime <- read.csv("http://vincentarelbundock.github.io/Rdatasets/csv/datasets/USArrests.csv", stringsAsFactors = FALSE)

### Call the functions on crime to examine the data frame
dim(crime)
str(crime)
summary(crime)
colnames(crime)

### The head() and tail() functions default to 6 rows, but we can adjust the number of rows using the "n = " argument
head(crime, n = 10)
tail(crime, n = 5)

### While the first 6 functions are printed to the console, the View() function opens a table in another window
View(crime)
```

Now, let’s take a look at the output, so we can see what happens when the code is run.

First, we’ll look at the dim(), str(), summary(), and colnames()  functions: • dim(): In the crime data set, we can see immediately that there are only 50 rows and 5 columns. This function is useful, because it tells us whether it would be okay to print the entire data frame to the console. With this data set, it’s probably okay. If, however, there were 5,000 rows and 50 columns, we’d definitely want to view the data frame in smaller chunks.
• str(): The structure of the crime data set also tells us the number of rows (observations) and columns (variables), but it provides even more information. It tells us the column names, the class of each column (what kind of data is stored in it), and the first few observations of each variable.
• summary(): The summary provides descriptive statistics including the min, max, mean, median, and quartiles of each column. For example, we can see in the crime data set that the average murder rate across all states is 7.8 for every 100k people.
• colnames(): This function prints a vector of the column names, which can be useful if you’re trying to reference a particular column. For the crime data set, we can see that the state column has no name. Knowing this, we may want to assign it a name before going forward in our analysis.

Now, let’s take a look at the head() and tail() functions: • head(): This function defaults to printing the first 6 rows, but we’ve decided to call the first 10. In the crime data set, this gives us the data on states Alabama through Georgia.
• tail(): The same as head(), except this function prints the end of the data frame. In this case, we’ve called the last 5 observations, so we can see the data on Virginia through Wyoming.

Finally, let’s take a look at the window that appears when we call the View() function: • View(): This window provides vertical and horizontal (if enough columns to justify) scroll bars for you to browse the entire data set. It looks exactly like an Excel spreadsheet–you just can’t manipulate any of the data. (Note: make sure you use a capital “V” when calling this function; it’s case sensitive).

That’s it! Getting comfortable with these functions should make it easier for you to work with data frames in a more logical and efficient manner.

Happy viewing!